The homology representations of the $k$-equal partition lattice
نویسندگان
چکیده
منابع مشابه
THE HOMOLOGY REPRESENTATIONS OF THE k-EQUAL PARTITION LATTICE
We determine the character of the action of the symmetric group on the homology of the induced subposet of the lattice of partitions of the set {1, 2, . . . , n} obtained by restricting block sizes to the set {1, k, k + 1, . . . }. A plethystic formula for the generating function of the Frobenius characteristic of the representation is given. We combine techniques from the theory of nonpure she...
متن کاملSymmetries of the k - bounded partition lattice
We generalize the symmetry on Young’s lattice, found by Suter, to a symmetry on the k-bounded partition lattice of Lapointe, Lascoux and Morse. Résumé. Nous généralisons la symmetrie sur le treillis de Young, découvert par Suter, à une symétrie sur le treillis des partages bornés par k et étudié par Lapointe, Lascoux and Morse.
متن کاملA basis for the non-crossing partition lattice top homology
We find a basis for the top homology of the non-crossing partition lattice Tn . Though Tn is not a geometric lattice, we are able to adapt techniques of Björner (A. Björner, On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107–128) to find a basis with Cn−1 elements that are in bijection with binary trees. Then we analyze the action of the dihedral group on this basis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1997
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-97-01806-0